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We have derived results under identification assumptions,

but what do we do when these assumptions are violated?

@ We have relied on the key assumptions that we have:
e measured a sufficient set of variables to adjust for confounding, and
e we have avoided selection bias.
o If these assumptions are incorrect, our estimation strategies will yield
bias.

@ Now we will discuss alternative strategies that can validly estimate
causal effects under an alternative set of assumptions that do not
require that our exchangeability conditions hold.

@ Our first example is instrumental variable (IV) methods.

e Instrumental variables are very popular in economics and the social
sciences. Angrist, Imbens and Card were awarded the 2021 Nobel
medal in Economics for their work on instrumental variables.
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Definition of Vs

Definition (Main IV assumptions)
@ cor(Z,A) # 0 (instrument strength)
@ Y?#? = Y7 for all a,z (exclusion restriction)
© Z 1L Y? for all a (unconfoundedness of Z)

@ The main IV assumptions are not themselves sufficient to identify the
average effect of A on Y; thus, we need additional assumptions, and
people have suggested several different ones; these different
conditions are often called homogeneity conditions.

@ If the unconfoundedness assumption holds, then there are no common
causes of Z and Y in the DAG.

Mats Stensrud Randomisation and Causation Spring 2024 296 / 402



3 graphs that satisfy the main IV assumptions

In the first graph, we have a causal instrument, in the second graph we
have a proxy instrument and the third graph is a combination.
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Example of IV studies

@ Several studies in economics.

o A seminal example is on the effect of education on future earnings by
Joshua D Angrist and Alan B Krueger. “Estimating the payoff to
schooling using the Vietnam-era draft lottery”. In: NBER working
paper w4067 (1992);

It seems very difficult to adjust for common causes of education and
future earnings, but the authors used the result of a lottery that
determined priority for the US military during the Vietnam war.

@ Randomised controlled trials when treatment is blinded.

@ Some non-blinded studies. For example, American economists gave families
vouchers Z to reduce the costs from moving from a neighbourhood with
high poverty to a neighbourhood with low poverty. Let A denote moving
and let Y denote psychological stress.

@ Mendelian Randomization

e A genetic variant Z that is associated with treatment A and is not
associated with the outcome Y. outside of A.

@ Applied researchers use them in a range of other settings too.
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More on examples

@ In our smoking cessation study: The price of cigarettes in the
population could be an instrument if
e cigarette price affects the decision to quit smoking,
e cigarette price affects weight change only through its effect on smoking
cessation, and
e no common causes of cigarette price and weight change exist.

Hernan and Robins, Causal inference: What if?
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Additional IV assumptions: linear structural equation

model

Suppose that the structural equation for Y is linear,

Definition (Linear SEM)

Y = f;’(A7 H76Y) = BA+g(H76Y)

Clearly, this linear structure is stronger than what we have previously imposed
when we have done identification (think about all the things we did on
non-parametric structural equations, DAGs and SWIGs).

However, some disciplines have almost only considered linear models, and there is
disagreement as to whether these assumptions are justified.

We will leave these issues aside for a moment (but we will get back to them), and
notice that if follows from the linear SEM that

Y —y?=pB(a—4).
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[V theorem

Theorem (IV theorem 1)
If cof(Z, A) # 0, E(Y2=0 | Z) = E(Y?2=0), and the linear SEM hold, then

co(Y,2)

cov(A, Z) =h

P =

The first two assumptions are implied by the main IV assumptions
We will call ¥ the IV functional.
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Proof of IV theorem 1

Under the linear SEM,
Y = Y*0 = BA+ g(H,ev) — g(H,ev) = BA, ie. Y — A=Y

Thus, E(Y —BA | Z) = IE(YEZO | Z2) = ]E(Yazo), thatis, E(Y — BA | Z) is
independent of Z. Thus,

E[{Z —E(2)}(Y - BA)]
=E[{Z — E(Z)}E{(Y — BA) | Z}] iterative expectation
=E[{Z — E(Z)}E{Y — B8A}] the independence above

=E{Z — E(Z)}E{Y — A}, the independence above
:07

and therefore cov(Y — SA, Z) = 0 (you'll see this by using the definition of
covariance), and 0 = cov(Y — BA, Z) = cov(Y, Z) — Beov(A, Z). O

v
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An intuitive interpretation

In the "causal instrument” graph, the IV functional has an intuitive
interpretation:
@ Consider the coefficient of the population least squares of a

dependent variable W on (1, Z). This coefficient say Sz, is indeed
_ cov(W,Z)
Pwz = var(Z

That is, we ca)n think about Sz as the limit in probability of the least
squares coefficient in the regression model E(W | Z; o, ) = o + 5Z.

e By dividing the definition of ¢ by var(Z) in the numerator and
denominator it follows that

_ Pz
 Baz’
o If the instrument Z € {0,1} then
CE(Y|Z=1)-E(Y|Z=0)
V= E(A|Z=1)-E(A|Z=0)’
in words, the average additive effect of Z on Y divided by average
effect of Z on A in our IV graph.
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The problem with the linear SEM

@ The linear SEM is a very strong restriction. Essentially, we are saying
that all individuals have the same effect of the treatment, which is
very unlikely.

o In fact, the key idea of " personalised medicine” is that different people
respond different to treatments.

o In the smoking cessation example, this assumption would only hold if
smoking cessation made every individual in the population gain (or
lose) the same amount of body weight!

@ In the homework you will show that 1/ has a causal interpretation
even under a relaxation of the linear SEM assumption, where

Y =f,(A H,ey) = h(ey)A+ g(H,ey),

where h and g are unspecified functions. However, now we've made
the strong assumption that H does not modify the causal effect of A
(on the additive scale) because h does not have H as argument.
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A further relaxation (we will not study this one in detail)

Definition (Robins’s IV assumptions)
@ cor(Z,A) # 0 (instrument strength) (as before)
@ Y#? = Y2 for all a,z (exclusion restriction) (as before)
© Z L Y?=0 (unconfoundedness of Z) (Slightly weaker)

© There exists a 8 such that

E(Y | Z,A) —E(Y* | Z,A) =pA
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On Robins’s IV assumptions
Under Robins’s IV assumptions, 5 = 1.

Using assumption 4,

E(Y _ BA | ZvA) :E(Yazo | Z7A)’
and thus we integrate out A,

E(Y - BA|Z) =E(Y*™°| 2),

and follow the steps in the proof of the first theorem on IVs. O
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Robins’s IV assumptions continue

@ The last assumption is an example of a so-called structural nested model,
E(Y | Z,A) —E(Y?™°| Z,A) = h(A, Z; ),

satisfying h(0, Z; 8) = 0 for all S.

@ The model from the previous slide does not assume effect homogeneity, but
it does (only) assume no effect modification by Z on the additive scale.

@ However, 8 does not (without extra assumptions) have the interpretation as
the average (additive) treatment effect, but when A is binary it quantifies an
average treatment effect of the treated (use consistency to prove this),

E(Y*™ | ZA=1)~E(Y"" | ZA=1)=E(Y" - Y[ A=1) = 5.

@ Does this model generalize the linear structural equation model? Yes.
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But is it a plausible assumption that we can reason about?

@ How can a scientist (or other expert) argue in support of a constant average
causal effect within levels of the proposed instrument Z and the treatment A
in any particular study? Hernan and Robins, Causal inference: What if?

@ Yet another possibility is to assume that, for any level of the unmeasured
variable H, the effect of A on Y is the same, i.e.

E(Y*=L | H) ~ B(Y*=0 | H) = E(Y*=) — E(Y*=),
but this assumption is not plausible either because the unmeasured variables

can often be effect modifiers.

e For example, weight gain after smoking cessation can vary with prior
intensity of smoking, which may itself be an unmeasured confounder
for the effect of smoking cessation on weight gain.>°

39Hernan and Robins, Causal inference: What if?
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Another common alternative

The final criterion we will study is not a criterion about homogeneity.

Definition (Imbens and Angrist’s IV assumptions)
@ cor(Z,A) # 0 (valid instrument)

@ Y2 = Y2 for all a,z (exclusion restriction)
© Z 1L Y? and Z Il A* (strong unconfoundedness of Z)
o

AZ=1 > AZ=0 (Monotonicity)

@ These assumptions are often used in practice.
@ Note that the 3rd assumption is violated in two of our example graphs.

@ The 4th assumption is strong but sometimes plausible. | will give some
intuition why.
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Intuition (Robins)

We can only can estimate the effect of treatment on those whose behavior
was actually affected by the instrument, so Compliers and Defiers are the
only relevant sets. If we have both, then we get mixed up. If there are
only Compliers, things work out OK
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More on monotonicity

Suppose Z, A € {0,1}. Then we can divide the population into 4 mutually
exclusive groups

o (A= =0,A?=0 = 0), the never-takers
o (A*=l =1,A?70 = 1), the always-takers
o (A1 =0,A?=0 = 1), the defiers

o (A=l =1,A?70 =0), the compliers

Monotonicity assumes no defiers in the entire population. That is, nobody does
exactly the opposite of what they are told to do.

Definition (Local Average Treatment Effect)

The local average treatment effect in stratum AZ=! = a, AZ=0 = &

LATE = E(Y*=' — Y= | ATl = g, A0 = ).

In particular, the complier average treatment effect is

CACE =E(Y*=' — Y*=0 | A=t = 1,470 =0).
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Monotonicity example

As a simplified example, consider a physician who generally prefers
Treatment A, but prescribes Treatment B for more physically active
patients (e.g., because Treatment A is associated with risk of motor-skill
impairment), and another physician who generally prefers Treatment B,
but makes exceptions for patients with a family history of diabetes (e.g.,
because a new study suggests such patients might respond better to
Treatment A). Any physically active patient with a family history of
diabetes who could potentially have seen either of these providers would
“defy” both preferences and thus violate the monotonicity assumption.

Sonja A Swanson et al. “Definition and evaluation of the monotonicity
condition for preference-based instruments”. In: Epidemiology
(Cambridge, Mass.) 26.3 (2015), p. 414
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Returning to our smoking example

@ the compliers are those who would quit smoking when the high cigarette
price is high and who would not quit smoking when the cigarette price is
low. Conversely, the defiers are those who would not quit smoking when the

high cigarette price is high and who would quit smoking when the cigarette
price is low.40

*OHernan and Robins, Causal inference: What if?
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Result on Imbens and Angrist’s IV

Under conditions 1-4 of Angrist and Imbens,

CACE = 1)
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Proof of Angrist and Imbens

Yz:l o Yz:O
_ »/Z:l,AZ:1 _ YZ:O,AZ:0

consistency

AT _ AZ=0 ) L.

=Y Y exclusion restriction

= (Y7 - ya=0)Az=t 4 ya=0 _ f(ye=l  ya=0)42=0 4 ya=0) consistency
— (Ya:I o Ya:O)(Az:I o Az:O)

Note that because AZ=1 > AZ=0 (AZ=1 — Az=0) ¢ [0, 1}. Thus,

]E( YZ:1 _ YZZO) _ ]E[( Ya:1 _ YaZO)(AZZI _ AZZO)]
_ E[( Ya:l _ Ya:O) | Az=1 _ Az=0 _ l]P(Az=1 _ Az=0 _ 1)
— ]E[( Ya:l _ Ya:O) | Az:l > Az:O]P(Az:I > AZZO).

2=1_ yz=0
Thus, B[(Y>=" — Y3=0) | A==1 > A==0] = BV O

4
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Proof of Angrist and Imbens

Furthermore, by assumption 3,

B(Y= - Y= =E(Y|Z=1)-E(Y|Z=0)

and
P(Azl A= 0):P(A21 Az 0_0)
= P(A*=! = 1) — P(A*7! = 1, A"=% = 1) law of total probability
= P(A*7! = 1) — P(A*=° = 1) monotonicity
=PA=1|Z=1)- P(A=1|Z =0) assumption 3 and consist.
Thus,

yz_ yz:O
E[(Ya_ ya= 0) | AZ= 1 >Az O] _ ( )

(Az_l > Az:O)
E(Y|Z=1)-E(Y | Z=0)
PA=1|Z=1)-P(A=1|Z=0)
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[V estimation

"1V estimation requires modeling assumptions (such as monotonicity) even
if infinite data were available. This is not the case for previous methods
like IP weighting or standardization: If we had treatment, outcome, and
confounder data from all individuals in the superpopulation” !

“'Hernan and Robins, Causal inference: What if?
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The monotonicity assumption was considered to be a

salvation, but...

@ Hard to use the complier average treatment effect by decision makers,
because it only tells us something about a subset of the population.
Suppose, for example, 10% of the population are compliers. Then,

e can we justify to make recommendations based on the CATE to
everyone in the population?

e Unfortunately, we cannot observe the compliers, so we cannot target
the intervention to the compliers.

o What is the right thing to do if the treatment is not beneficial in
always-takers and never-takers?

o | agree with Hernan & Robins that it is often better to be more honest
and accept that "interest in this estimand is not the result of its
practical relevance, but rather of the (often erroneous) perception that
it is easy to identify..."
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"This goes beyond the old story of looking for an object where the light is
strong enough to see; rather, we have control over the light, but choose to
let it fall where it may and then proclaim that whatever it illuminates is
what we were looking for all along.”

Angus Deaton
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In practice

@ "Second, relatively minor violations of conditions (i)-(iv) for IV
estimation may result in large biases of unpredictable or
counterintuitive direction. The foundation of IV estimation is that the
denominator blows up the numerator. Therefore, when the conditions
do not hold perfectly or the instrument is weak, there is potential for
explosive bias in either direction.”

@ "As a result, an IV estimate may often be more biased than an
unadjusted estimate. In contrast, previous methods tend to result in
slightly biased estimates when their identifiability conditions are only
slightly violated, and adjustment is less likely to introduce a large
bias. The exquisite sensitivity of IV estimates to departures from its
identifiability conditions makes the method especially dangerous”

Hernan and Robins, Causal inference: What if?
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More positively

@ "IV estimation is better reserved for settings with lots of unmeasured
confounding, a truly dichotomous and time-fixed treatment A, a
strong and causal proposed instrument Z, and in which either effect
homogeneity is expected to hold, or one is genuinely interested in the
effect in the compliers and monotonicity is expected to hold.” 42

@ Causal inference relies on transparency of assumptions and results
from analyses that rely on different assumptions. In that sense, IV is
an attractive approach because it depends on a different set of
assumptions than other methods.

*Hernan and Robins, Causal inference: What if?
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Section 28

IV inequalities
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Motivation: IV inequalities

Theorem (IV inequalities)

Suppose Z 1. Y?, positivity and consistency hold. Then,

PI[Y=0,A=0|Z=0]+P[Y=1,A=0]|Z=1]<1;
PIlY=0,A=1|Z=0]+P[Y=1,A=1]|Z=1]<1;
P[Y=1,A=0|Z=0]+P[Y=0,A=0]|Z=1]<1;
PIlY=1,A=1|Z=0]+P[Y=0,A=1|Z=1]<1

The idea is that the instrumental variable assumptions put constraints on
the joint law p(y, a, z). This is interesting because, in principle, we can
use these logical bounds to use evaluate the IV assumptions: we can derive
a test of whether the IV assumption Z Il Y@ holds. If any of the above
inequalities fail, then the core conditions must be violated; however, it is
possible that the core IV conditions are violated without failing the
inequalities.
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Cont

For i,j, k € {0,1},

PIY*= =]
=P[Y= =j|Z=k bc (ZI Y?)
=P[Y= =jA=i|Z=K+P[Y™ =j,A=1—i|Z=k] laws of prob.
=P[Y=j,A=i|Z=K+P[Y =j,A=1—i|Z =k const.
<P[Y=j,A=i|Z=kK+PA=1—i|Z =k
=1-PlY=1—j,A=i|Z=k]
Thus
mkaxP[Y:I,A:i|Z:k]SP[Y"’Zizl]
<minl—P[Y =0,A=i|Z=K], k#k",

where the lower bounds follows by taking j = 0 in the exp. for P[Y*~' =j]. [
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According to Pearl

"The instrumental inequality can be used in the detection of undesirable
side- effects. Violations of this inequality can be attributed to one of two
possibilities: either there is a direct causal effect of the assignment (Z) on
the response (Y ), unmediated by the treatment (A), or there is a
common causal factor influencing both variables. If the assignment is
carefully randomized, then the latter possibility is ruled out and any
violation of the instrumental inequality (even un- der conditions of
imperfect compliance) can safely be attributed to some direct influence of
the assignment process on subjects’ response (e.g., psychological aversion
to being treated). Alternatively, if one can rule out any direct effects of Z
on Y, say through effective use of a placebo, then any observed violation
of the instrumental inequality can safely be attributed to spurious
dependence between Z and Y, namely, to selection bias.”
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